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A semi-implicit formulation of the method of spectral deferred correc-
tions (SISDC) for ordinary differential equations with both stiff and non-
stiff terms is presented. Several modifications and variations to the origi-
nal spectral deferred corrections method by Dutt, Greengard, and Rokhlin
concerning the choice of integration points and the form of the correction
iteration are presented. The stability and accuracy of the resulting ODE
methods are explored analytically and numerically. The SISDC methods
are intended to be combined with the method of lines approach to yield
a flexible framework for creating higher-order semi-implicit methods for
partial differential equations. A discussion and numerical examples of the
SISDC method applied to advection-diffusion type equations are included.
The results suggest that higher-order SISDC methods are more efficient
than semi-implicit Runge-Kutta methods for moderately stiff problems in

terms of accuracy per function evaluation.

1. INTRODUCTION

The question of how to construct stable and accurate numerical methods for
the solution of initial value problems determined by ordinary differential equations
(ODEs) has been studied extensively and with a great deal of success in the last
thirty years. In particular, for non-stifft ODEs, explicit high-order methods such as
Runge-Kutta, multi-step, or predictor corrector methods are well understood, and

I This work was supported by the Director, DOE Office of Science, Office of Advanced Scientific
Computing Research, Office of Mathematics, Information, and Computational Sciences, Applied
Mathematical Sciences Program, under contract DE-AC03-76SF00098 and by the National Science
Foundation Grant DMS-9973290.

1



2 MINION

are readily available, e.g. [16, 8, 3]. For stiff systems, where efficient methods are
implicit, the issues can be more complicated, but still many good methods have been
developed, e.g. [17]. Nevertheless, Dutt, Greengard, and Rokhlin recently presented
a new variation of the classical method of deferred corrections, the spectral deferred
correction method (SDC) [12]. Implicit versions of this method are shown to have
good stability and accuracy properties for stiff equations even for versions with very
high-order accuracy (up to thirtieth order in [12]).

Traditional explicit or implicit methods for temporal integration are often ineffi-
cient when the equation being considered possesses two or more widely varying time
scales. The primary examples of such equations that motivate the current work re-
sult from the temporal discretization of partial differential equations (PDEs) which
model physical systems with two or more disparate time scales. Two well-known
examples are advection-diffusion-reaction problems and systems containing fluid-
membrane interactions. A common strategy for producing higher-order methods
for PDEs is the so called method of lines approach (hereafter MOL). In MOL, a
PDE is discretized in space only, which results in a set of coupled ODEs, one for
each discretization variable. These ODEs, which often contain both stiff and non-
stiff terms, can then be solved with any appropriate integration method. When stiff
terms are present, it is often expensive to implement fully implicit ODE methods be-
cause spatial nonlinearities in the PDEs would require the solution of large coupled
nonlinear equations. It is therefore desirable to use semi-implicit ODE methods
which allow stiff terms to be treated implicitly and non-stiff terms explicitly.

Many semi-implicit methods for ODEs have indeed appeared in recent years,
and there are disadvantages to each, particularly when very accurate solutions are
required. In this paper, a family of semi-implicit SDC methods will be introduced
which are designed to overcome the disadvantages of existing methods. The main
advantage of SDC methods is that one can use a simple numerical method (even
a first-order method) to compute a solution with higher-order accuracy. This is
accomplished by using the numerical method to solve a series of correction equations
during each time step, each of which increases the order of accuracy of the solution.
The flexibility in the choice of the method used in the deferred correction iterations
makes SDC methods particularly attractive to problems possessing disparate time
scales since a lower-order accurate semi-implicit or time-split approach can be used
during each iteration without limiting the overall solution to lower-order accuracy.
In this work, a simple first-order, semi-implicit method is used in the context of SDC
to construct higher-order semi-implicit SDC methods (hereafter SISDC methods).

The outline of the paper is as follows. After a short description of the SDC
method in Sect. 2, a semi-implicit version for a general class of ODEs is introduced
in Sect. 3, and a discussion of the advantages of SISDC methods over existing
approaches is presented. The stability and accuracy of SISDC methods are in-
vestigated in Sect. 4. Techniques for reducing the number of function evaluations
necessary for a given order of accuracy are also discussed. In Sect. 5, numeri-
cal examples using an initial value ODE and two advection-diffusion type PDEs
demonstrate the accuracy and efficiency of the methods.

2. THE METHOD OF SPECTRAL DEFERRED CORRECTIONS
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In this section, the original SDC method appearing in [12] will first be reviewed.
A semi-implicit version suitable for equations with both stiff and non-stiff terms
is presented in the following section along with a discussion of the advantages of
SISDC methods over existing methods.

2.1. Mathematical Preliminaries
The initial value ODE takes the form

S
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~

N
|

= F(t,¢(1)) t € [a,b] (1)
(;5((1) = ¢a- (2)

Here, the solution ¢(t) and initial value ¢, are in CN and F : R x CN — CV.
It is assumed that F' is smooth so that the discussion of higher-order methods
is appropriate. This assumption is more stringent than the Lipschitz continuity
necessary to assure that solutions exist (for some time) and are unique. (See any
standard text on ODE for the associated proofs.)

The SDC method of Dutt, Greengard, and Rokhlin is based on the following
observations concerning the integral form of the solution to Egs. (1)-(2)

o(t) = ba + / F(r,6(r))dr. (3)

Given an approximation to the solution qg(t), the goal of all deferred corrections

strategies is to formulate an equation for the correction 6(t) = ¢(t) — ¢(t). Follow-
ing [12], note that a measure of the error in ¢(¢) based on Eq. (3) can be written

t

B(1.9) = o+ [ F(r.d(r)ir = 3(0). 4)
Since ¢(t) = ¢(t) + 0(t), Eq. (3) yields
60 +30) = 60+ [ F(rd0) + sl 6
which implies
0= [ ' F(r, () + 6(r)) - F(r, 6(r)dr + B, ). 6)

This equation will be referred to as the correction equation.

Eq. (6) also gives an indication of how well E(t,¢) approximates 6(f). In a
numerical method for ODEs, the interval [a, b] generally spans a single time step
[tn,tni1] = [tn,tn + At]. If F is Lipschitz continuous in ¢ and || — ¢|| = O(At")
on [ty tns1], then ||0(t) — E(t, ¢)|| = O(At"*!). Note also that if F is a function
of t alone, then d(t) = E(t, ¢).

The general strategy of the SDC method is to use a simple numerical method to
compute a provisional solution ¢ on the interval [t,,, t,+1], and then to solve a series
of correction equations based on Eq. (6), each of which improves the accuracy of
the provisional solution. In [12], a forward or backward Euler type method is used
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for computing both the provisional solutions and the corrections. This procedure is
reviewed in the next section and a semi-implicit version is then presented in Sect. 3.

2.2. SDC based on Euler Methods

Given Egs. (1)-(2) and some interval [t,, tp4+1] on which the solution is desired,
the SDC method proceeds by first dividing [¢,,, tp+1] into p subintervals by choosing
points t,, for m =0...p, with ¢, =ty < t; <... <tp = tp4+1. In the following, the
interval [ty, t,+1] will be referred to as a time step while a subinterval [ty,, tm41] =
[tmstm + Aty] will be referred to as a substep. An approximate solution ¢°(t,,)
is computed for m = 0...p using the standard forward Euler method for non-stiff
equations or the backward Euler method for stiff problems.

Next, a sequence of corrections 6*(t,,) is computed by approximating Eq. (6)
which provides an increasingly accurate approximation to the solution ¢! =
#* + 6. In order to do this, the function E(t, #*(t)) must be approximated using
numerical quadrature. For this reason the points ¢,, are chosen in [12] to correspond
to the nodes for Gaussian quadrature. The choice of nodes is discussed further at
the end of Sect. 3.

Eq. (6) is also approximated by using forward or backward Euler. For instance,
using the notation 8%, = 6%(t,,,) (and likewise for ¢* and E,,(¢*)), the backward
Euler approximation to the correction equation is

6fn+1 = 08 + Aty [F(tmi1s ¢fn+1 + 6fn+1) — F(tms1, ¢ﬁ7,+1)] (7)
+ Enmi1(¢F) — En(0").

By rearranging terms, a direct equation for ¢*T! can be derived. Let It (¢*)
denote the numerical quadrature approximation to

/ " e, o (),

m

then using Eq. (4),

Emi1(¢%) = En(¢") = I (0") — ¢fn+1 + -

Hence, Eq. (7) is equivalent to

PR = 08 + Aty [F(tms1, 0000) — Ftma1, 051+ It (8)

When SISDC methods are used with MOL, this equation allows one to consider
boundary conditions for ¢**1 directly. In the numerical implementation however,
the incremental form (7) is used to avoid a loss of precision.

As long as the integral terms I+ (¢*) are computed to O(At**!) (which in this
setting implies some smoothness in F'), each iteration of the correction equation will
increase the order of accuracy of the solution by one order. Hence for k iterations of
the correction equation, the above procedure will produce an approximate solution
with truncation error of size O(At**?) and global accuracy O(At*™!). (See e.g.
[28] for analysis of deferred correction methods.) If F'(t, ) is Lipschitz continuous
in ¢, it is straightforward to show that the numerical method is also. Hence, since
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the entire SDC procedure is a single-step method, convergence is assured (see e.g.
3).

Time step selection and error estimation for SDC methods is facilitated by the
fact that approximations to the correction are being directly computed. The size
of these corrections can be monitored as part of a time step selection procedure.
A number of possibilities are discussed in [12], and all these procedures are appli-
cable for the methods introduced here. Note that despite the number of function
evaluations needed in the SDC iterations, these methods are shown in [12] to be
competitive with existing methods in terms of accuracy per function evaluation.

3. SEMI-IMPLICIT SPECTRAL DEFERRED CORRECTIONS

The key advantage that SDC methods provide in the design of semi-implicit
methods for ODEs is that the numerical method used in each deferred correction
can be very simple. It seems natural therefore to use simple semi-implicit methods
in the context of SDC to construct higher-order semi-implicit methods. The details
of such schemes are presented in this section followed by a discussion of alternative
methods.

3.1. Details of The Semi-Implicit Methods
Consider the ODE

¢'(t) = F(t, (1) = Fp(t, (1)) + Fi(t, ¢(t)) (9)
¢(a) = Qa,
where t € [a,b], Fg is a non-stiff term and F7 is a stiff term. The subscripts refer
to the desire to treat the non-stiff terms explicitly and the stiff terms implicitly.
This can be accomplished with a few straightforward modifications of the SDC

procedure described above.
A first-order numerical method for finding ¢°(t,,) is simply

?n+1 = ¢?n + Atm[FE(tn"u ¢1(')n) + FI(tm+17 ¢1(')n+1)]' (10)

When F7 is linear, this type of method has also been referred to in the literature
as the W-Euler method. (See [23] for an analysis of W-methods). Likewise, a
semi-implicit version of Eq. (7) is
Ot = O+ At [Fi(tm, O, +05) = Fi(tm, én,) (11)
+ Fl(tm-i-la ¢fn+1 + 6fn+1) - Fl(tm-i-lv ¢fn+1)] + Em-‘rl (¢k) - Em(¢k)'

As in Eq. (8), this equation can be rearranged to yield a direct update for ¢fn':_11

PEEL = OEFL 4 At [Fi(tm, 05FY) — Fi(tm, oF,) (12)
+ Fl(tm+17 ¢ﬁj:‘,-11) - Fl(tm+17 ¢ﬁ7,+1)] + Im+1 (¢k)

Egs. (10) and (12) can be used to construct SISDC methods of arbitrarily high
order of accuracy.
A few comments on the form of the quadrature for I +1(¢*) are required. In [12],
the points t,,, are chosen to be the standard Gaussian quadrature nodes, and the so-
lution is only integrated at these nodes on the interior of the interval. This requires
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the use of extrapolation to yield the solution at the endpoint of the interval. Here,
the nodes from Gauss-Lobatto quadrature are used instead, hence no extrapolation
is necessary. Since the quadrature must be done for each subinterval [t,,, tmt1],
there are actually p quadrature rules

p

It (") = Y @ F(t, oF) (13)

=0

for m = 0...p—1. The coefficients ¢, can be precomputed, and the quadrature is
reduced to a simple matrix-vector multiplication.

Since the function F'(t,,, %) is known at p+ 1 Gauss-Lobatto quadrature nodes,
the approximation to the integral of F' over the entire time step, i.e.

/ " e, o (),

n

can be computed with error O(At***!). The integrals in Eq. (13), however, are
computed with error O(A¢? +2) since they are simply computed as the integral of the
interpolating polynomial over the subinterval. Since a truncation error O(AtK +1)
is required for a Kth-order method, choosing a value of p = K — 1 provides suf-
ficient accuracy in the quadratures. This choice is also sufficient to provide an
O(AtK) approximation of the solution for any desired point through polynomial
interpolation at the quadrature nodes.

For ease of identification, the SISDC method using P Gauss-Lobatto nodes (i.e.
P—1 substeps) and K total iterations (or I —1 iterations of the correction equation)
will be denoted SISDCE. This is slightly different than the notation in [12], but
has the benefit that an SISDCE method has global order of accuracy min (K, P).
In the remainder of the paper, the methods considered will have P = K.

Note that the sum of the quadratures in Eq. (13) is the Gauss-Lobatto quadrature
rule, hence the sum of the quadrature errors on the subintervals is again O(At*?11).
Therefore, in the time marching of the correction equation the individual errors can-
cel to an extent, and it is reasonable to suggest that SISDCE | methods should
perform similarly to SISDCE methods while requiring fewer function evaluations
per step. This has been observed in numerical tests, although the observed differ-
ences were slight in terms of accuracy per function evaluation. Lastly, rather than
using Gauss-Lobatto quadrature nodes, it is certainly possible to choose the nodes
in a way which results in the quadrature rules on each subinterval being more accu-
rate at the cost of reducing the accuracy of the quadrature over the entire integral.
However, it is not clear a priori whether this would improve the overall accuracy
of the method, and this idea is not pursued further here.

3.2. Comparison with Existing Methods
Like fully implicit or explicit SDC methods, SISDC methods can in principle be
constructed with an arbitrarily high order of accuracy. In general, the smaller the
tolerance for error, the more attractive a higher-order method becomes, and as is
shown in the next section, higher-order SISDC methods retain the good stability
properties of lower-order methods. In this section, multi-step methods, Runge-
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Kutta methods and operator splitting methods are all compared to SISDC meth-
ods?.

High-order semi-implicit linear multi-step methods have been well documented
(see e.g. [13]) and have also been studied in the MOL context (see e.g. [5, 13, 2]).
These methods have the disadvantage that they are not self-starting, they are
cumbersome when variable time-stepping is required, and higher-order versions
typically suffer from severe stability restrictions.

Because of the disadvantages mentioned above, Runge-Kutta methods have be-
come the most popular methods for the numerical solution of ODEs in the context of
MOL. Semi-implicit Runge-Kutta methods (also called IMEX or additive Runge-
Kutta methods) have been developed which are similar in style to fully implicit
SDIRK methods and are also closely related to W-methods [4, 24, 23, 19]. The re-
cent paper by Kennedy and Carpenter [19] presents detailed numerical experiments
using semi-implicit Runge-Kutta methods which have good stability properties and
are efficient in terms of accuracy per function evaluation for orders up to five (meth-
ods with order higher than five appear to have unfavorable stability properties).
Similar methods have also been used with MOL for PDEs with stiff and non-stiff
components (see e.g. [27, 4, 19, 9]).

In all of the Runge-Kutta methods mentioned above, the value of the solution
computed during a time step is given by a particular linear combination of the
right hand side of the ODE evaluated at intermediate or stage values, some of
which have truncation errors of lower-order accuracy than the final value. The
linear combination is chosen so that the lower-order truncation errors in the stage
values cancel, and hence the exact form of these errors must be known. This makes
the generation of Runge-Kutta methods for more than two disparate time scales
very difficult. It also limits the flexibility of how different terms in the equation are
calculated.

In SDC methods, lower-order intermediate solutions are used only to calculate
forcing terms in the subsequent correction equation, and hence do not contribute
directly to the final value. This allows for a straightforward extension to problems
with three or even more time scales, and also allows different time steps for different
terms in the equation (see [6]). Two different time steps could be used for SISDC
methods as well, but in the examples presented here, the cost of evaluating the
explicit piece is much less expensive than that of computing the implicit piece,
so there is little point in having a larger explicit time step. For some methods
for PDEs (e.g. those for hyperbolic conservation laws involving the solution of
Riemann problems), the cost of computing the explicit piece may not be negligible.

Operator splitting is another approach to integrating an equation of the form of
Eq. (9) that allows flexibility in the way different terms in the equation are updated.
In fact, the predictor step in SISDC can be thought of as a simple Strang splitting
using forward Euler on the explicit piece and backward Euler on the implicit piece.
The correction equation can further be thought of as correcting both the integration
error and splitting error simultaneously.

2A complete review of the literature will not be attempted. The citations given represent only
a selection of recent papers. See the bibliographies in the cited works for more complete citations.
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It has been well documented that when combined with MOL, Runge-Kutta meth-
ods typically suffer from a reduction in the order of accuracy when time dependent
boundary conditions are prescribed unless special care is taken when imposing in-
termediate boundary conditions [15, 20, 26, 11, 1, 25]. In particular, the exact
boundary conditions imposed for the PDE cannot be used for intermediate bound-
ary conditions without a degradation occurring in the order of accuracy. The loss
of accuracy appears as a boundary layer because the error at the boundary for in-
termediate stage solutions is forced to be zero, while the error in the interior of the
domain is of the size of the stage order of the method. The loss of accuracy occurs
when spatial derivatives of this boundary layer are computed since spatial deriva-
tives are not Lipshitz continuous. Suggestions for restoring full accuracy in certain
cases have been proposed for explicit Runge-Kutta methods (e.g. [1, 25, 10]), but
at present, no general strategy for semi-implicit Runge-Kutta methods has been
developed.

A similar problem occurs as well with SISDC methods, but because intermediate
solutions do not contribute directly to the final solution, there is more flexibility in
the imposition of boundary conditions. Accuracy at the boundary can be iteratively
improved with the deferred corrections along with error in the interior. A paper
addressing the imposition of boundary conditions for SISDC methods applied to
PDEs where diffusion is treated implicitly is in preparation [22].

4. STABILITY AND ACCURACY ANALYSIS

A complete stability analysis of numerical methods for nonlinear PDEs with
multiple time scales is possible only in the most specialized instances. With MOL,
one can instead perform a linearized analysis to yield insight into how the stability
of the method depends on the time step. Therefore a complete understanding of
the stability of the underlying ODE method is essential.

The stability of a given ODE method is traditionally studied by considering the
model problem

S

~~

~

N
|

= Ao
o(0) = 1,

where ) is some complex constant. For a given method, let ¢;(\) denote the
solution computed using one step of the method and At = 1. The stability region for
the method can then be defined by the set of A for which |¢1 ()| < 1. Alternatively,
the stability region can be interpreted as the region in which the product AA¢ must
lie for a given A so that the numerical solution is bounded as the number of time
steps goes to infinity. Hence ¢; () is called the amplification factor.
To examine the stability of SISDC methods, let A = a + i for real constants «
and 3. The model problem can then be split into

o(t) = Pio+ao
6(0) = 1,

where the imaginary piece of the equation is dealt with explicitly and the real piece
implicitly. This is the relevant model problem resulting from a linearized stability
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analysis of methods for advection-diffusion type PDEs. The stability diagrams for
SISDCE methods are computed on the model problem. The stability diagrams
for methods of third through seventh order are shown in Fig. 1. The plots suggest
that each method is A(«)-stable for roughly the same «.

Stability Regions

8 f f f f f
= 7th order

= 6th order
— 5th order
— 4th order

= 3rd ofder

Im(\)

Re(M)

FIG. 1. Stability regions for the SISDC{g methods with K ranging from three through
seven.

Since the amount of work being done for each step of an SISDC method in-
creases quadratically with the order, it is informative to scale the stability diagrams
proportionally. The stability diagrams scaled by the number of implicit function
evaluations required per time step, which is K(K — 1), are displayed in Fig. 2. It
is tempting to draw the conclusion from this figure that the lower-order methods
are more efficient since relatively larger time steps can be taken. This is only true
however if one ignores the issue of accuracy. As will be discussed in the next sec-
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tion, the higher-order methods possess greater relative accuracy. In other words,
higher-order methods allow one to use a larger time step for a given error tolerance
than lower-order methods.

Scaled Stability Regions
0.5

0.45
0.4

0.35

-~ 6th order =3th °rd¢r
0.3

<

0.2

0.15

0.1

0.05

O 1 1 1 1

-0.5 -0.4 -0.3 -0.2 -0.1 0

Re(M)

FIG. 2. Scaled stability regions for the SISDCE methods with K ranging from three
through seven.

Although the SISDC methods above appear to be A(a)-stable, none are L-stable.
As mentioned in [12], for the fully implicit SDC methods, ¢; () is simply a rational
function of the complex number A, hence

lim ¢;(A) (14)

|A] =00

0.1
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is independent of how A actually approaches infinity. Therefore, the implicit SDC
method are L-stable if

lim_61(0) =0, (15)
where again A = a + fi. None of the implicit SDC methods based on backward
Euler are L-stable, but the above limit exists, is easily computed, and is less than
one. Hence, as is pointed out in [12], a linear combination of the results from two
different SDC methods can be used to construct an L-stable method.

For the SISDC methods, matters are more subtle. The amplification factor is not
a rational function of A, but instead a ratio of polynomials in « and (3. Therefore
the limit in Eq. (14) depends on how the limit is taken. For fixed § however, the
limit in Eq. (15) exists and does not depend on 3. None of the SISDC methods
studied here have the property that this limit is zero, hence none could possibly be
considered L-stable in any generalized sense. It is possible, however, to construct
a scheme for which this limit does vanish.

Following [12], let u(k,p) be the limit in Eq. (15) for the SISDC¥ method. As in
the fully implicit case, u(k, p) can be easily approximated numerically. If k1, ko, p1,
and py are such that p(ki,p1) # p(ke,p2), then the method defined by the linear
combination

M(k%pz)SISDCﬁf - M(khpl)SlSDC;f;
p(ka, p2) — p(ky,p1)

would have the property that the limit in Eq. (15) vanishes. However, it is certainly
not obvious under what conditions this procedure would be advantageous, and the
subject is not pursued further in this paper.

4.1. Order Versus Accuracy

Although informative, the stability diagrams presented in the last section give
no information concerning the accuracy of computed solutions. In the context of
higher-order methods, a more important measure of the efficiency of a method is
the relative accuracy region. Whereas the stability diagram for a method gives an
indication of how large the time step can be so that the solution does not contain
catastrophic error, accuracy diagrams give an indication of how large a time step
can be so that certain error criteria are met. In this section, the accuracy diagrams
of SISDC methods of different orders will be presented and compared to those of a
particular additive Runge-Kutta method.

For a given accuracy €, the accuracy region is the set of A € C for which |¢1(\) —
e*| < e. The accuracy regions for the SISDC methods for € = 10~ are shown in
Fig. 3. As one would expect, the size of the accuracy region increases with the order
of the method. As with stability diagrams, it is more relevant to consider stability
diagrams which are scaled by the number of function evaluations required for the
method. The scaled accuracy regions are shown in Fig. 4, and unlike the stability
diagrams, the higher-order methods still have larger accuracy regions after scaling.
The scaled regions for € = 1078, where the differences are more pronounced, are
displayed in Fig. 5. This implies that the greater the accuracy required of the
solution, the more cost-effective higher-order methods become.



Im(})

12 MINION

Accuracy Regions, € = 1.0e-4

2 -
1.51
1+
0.5r
0 - 71h ordef , - 6th; order , ;Sth order —{1th —S;r
-9 -8 -7 -6 -5 -4 -3 -2 -1 0
Re()\)

FIG. 3. Accuracy regions for the SISDC? methods with K ranging from three through
seven for error tolerance 1074,
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Scaled Accuracy Regions, € = 1.0e-4

? ? ?

0.05

0.045

0.04

0.035

0.025

0.02

0.015

0.01

" 7thorder4 L6th L5thorder L4th L 3rdorder

O | | |
-0.25 -0.2 -0.15 -0.1 -0.05 0 0.05
Re())

FIG. 4. Scaled accuracy regions for the SISDCE methods with K ranging from three
through seven for error tolerance 10~ 4.
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Scaled Accuracy Regions, € = 1.0e-8
0.018 ! | ! ! | ! ! !

0.016

0.014

0.012

0.01

0.008

0.00674 order

~ 6th order

0.004

0.002

1 1
-0.005 0 0.005

O 1 1 1 1 1
-0.03 -0.025 -0.02 -0.015 -0.01 0.01 0.015

Re(A)
FIG. 5. Scaled accuracy regions for the SISDCE methods with K ranging from three

through seven for error tolerance 10~ 8.
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As a comparison, the accuracy diagram of an SISDC method is compared to
a semi-implicit additive Runge-Kutta method from [19]. Fig. 6 shows the scaled
accuracy diagrams for the fourth-order ARK4(3)6L[2]SA method and the SISDC{
method for e = 1078, At this level of precision, the two methods are of comparable
efficiency in terms of accuracy per function evaluation. Since the SISDC method
is of higher order, the size of the corresponding accuracy region will shrink more
slowly than that of the ARK method as € is further decreased. This is confirmed
in Fig. 6 which shows the scaled accuracy diagrams for e = 10719,

Scaled Accuracy Regions, € = 1.0e-8

0.02

0.018

0.016

0.014

o012
7th order SISDC

o

o

S

®©
T

0.006 L 4th order ARK

0.004

0.002

O 1 1 1 1 1 1 1
-0.03 -0.025 -0.02 -0.015 -0.01 -0.005 0 0.005 0.01

Re())

FIG. 6. Scaled accuracy regions for error tolerance 10~8 for the SISDCY method and the
fourth-order (semi-implicit) Additive Runge-Kutta method of Kennedy and Carpenter.

The pertinent point is that higher-order SISDC methods are more efficient than
lower-order SISDC or additive Runge-Kutta methods when the solution is required

1
0.015

0.02
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Scaled Accuracy Regions, € = 1.0e-10
001 T T T T

0.009
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FIG. 7. Scaled accuracy regions for error tolerance 10710 for the SISDCYT method and the
fourth-order (semi-implicit) Additive Runge-Kutta method of Kennedy and Carpenter.



A FOURTH ORDER SEMI-IMPLICIT PROJECTION METHOD 17

to be computed very accurately. The threshold at which higher-order methods
become more efficient is, of course, problem dependent. For example, in the stiff
Van der Pol’s equation test problem presented in Sect. 5, the ARK method is more
efficient in terms of accuracy per function evaluation than the SISDC method for
the size of time steps considered, although one could reasonably conclude from the
error plots that the opposite would be true if greater accuracy were required.

4.2. Ladder Methods

It is possible to reduce the computational cost of a single step of the SISDC meth-
ods presented above without reducing the order of the overall method. One strategy
for doing this is based on the observation that the kth correction equation only re-
quires that the solution up to that point have truncation error of size O(Atk“).
Therefore, it is possible to reduce the number of substeps used to compute the
solution when k is small. In the following discussion, iterations corresponding to k
small will be referred to generically as the lower-order iterations. The stability and
accuracy of the resultant method will of course be affected. In the context of using
SISDC methods for PDEs, it may be the case that the solution is well resolved
in time (and presumably the time-step is restricted by spatial resolution). In this
case, reducing the temporal resolution of the lower-order iterations is justified.

As an example, consider the fourth-order SISDC} method. Rather than using
three substeps per iteration, it is sufficient to use only one for the initial iteration,
then two for the following two iterations, and three for the last, yielding a total
of eight rather than twelve total substeps. As is shown in Fig. 8, the fourth-order
ladder method has a scaled accuracy region of similar size as that of SISDC}.

The scaled accuracy regions for a of variety of possible ladder methods of vari-
ous order have been compared to those of the corresponding SISDCE methods.
No variation has been found that produces a substantially more efficient method
although the possibility certainly exists. It is possible that in the context of PDEs,
more efficient methods could be developed by reducing both the spatial and tem-
poral resolution for lower-order iterations. This will be addressed in future work.

5. NUMERICAL EXAMPLES

To evaluate the performance of the SISDC methods, versions varying in order
from three through seven are tested on two different sets of problems. In the first
set of tests, the formal order of accuracy as well as the accuracy for stiff problems
is demonstrated using Van der Pol’s equation. This common test problem is chosen
so that a comparison in terms of accuracy per function evaluation between SISDC
methods and other existing methods can be made. In the second set of tests,
advection-diffusion type PDEs are approximated using the SISDC methods and
MOL.

5.1. Van der Pol’s Equation
Van der Pol’s equation is a popular nonlinear test problem for methods for stiff
ODEs. The equation prescribes the motion of a particle x(t) by

2(t) + p(L = 2(t)2)a’ () + 2(t) = 0.
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Making the usual transformation, y; (t) = x(t), y2(t) = pa'(t), and t = t/u yields
the system

Y1 = Y2

vo = (—y1i+ (L —y7)y2)/e,

where € = 1/u%. As e approaches zero, these equations become increasingly stiff.
For the SISDC methods, the first equation is treated explicitly, and the second
implicitly.

The first example is designed to demonstrate that the SISDC methods do exhibit
the correct convergence behavior on a nontrivial problem. The SISDC methods of
order three through seven are tested on Van der Pol’s equation with € = 1. In this
case, the equation is not stiff, and the solution is smooth. Initial conditions for
each case are given by y;(0) = 2 and y2(0) = 2/3 (i.e. y5(0) =0), and the solution
is computed to time ¢ = 4, with a fixed time step.

To compute numerical errors for this problem, a reference solution is first com-
puted using SISDCT and 1024 time steps. Errors in a given solution are then
computed by interpolating values of the reference solution. Unlike many Runge-
Kutta methods, intermediate values in the SISDC method have full order accuracy,
hence the value of the reference solution at every substep is used in the interpolation.
An approximation to the L; error in time is computed by integrating the absolute
difference between the reference solution and each particular numerical solution.
Again intermediate values (which are conveniently located at the Gauss-Lobatto
integration nodes) are used in the integration.

The error in the second components of the solution is displayed in log coordinates
in Fig. 9 as a function of the number of function evaluations (which is K (K —1) times
the number of times steps for the Kth order method). The corresponding plot for
the first component of the solution is virtually identical, and is hence omitted. For
each order, a line corresponding to the expected convergence rate is superimposed.
In each case, the convergence of the numerical solution approaches the expected
value as At approaches zero. Note as well, that except for larger values of At, the
number of function evaluations required to attain a given accuracy decreases as
the order of the method increases. In other words, when high precision is desired,
higher-order versions of the method are more efficient than those of lower order.

5.2. Stiff Equations and Order Reduction

Since the SISDC methods were motivated by the need to solve problems with both
stiff and non-stiff parts, the above experiment is of limited significance. Therefore,
the above experiment is repeated for a mildly stiff case with e = 10! and a stiff
case € = 1073, To enable a direct comparison with the ARK methods in [19], the
initial conditions are set to y(1) = 2, y(2) = —0.6666654321121172, and solutions
are computed only to time ¢ = 0.5. Reference solutions are computed using a 7th
order fully implicit SDC integrator, and errors are computed by simply comparing
the absolute error at t = 0.5.

The results for e = 107! are shown in Figs. 10 and 11. As in the non-stiff case, the
convergence rate of each version approaches the expected value as At approaches
zero, although in this case, the observed convergence rate decreases if only larger
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FIG. 9. Errors for the Van der Pol equation with e = 1 computed using SISDC{g methods
for K ranging from 3 through 7.
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values of At are considered. The dramatic dips in the graphs correspond to certain
values at which the error at ¢ = 0.5 as a function of At changes sign. These dips
are therefore not a true indication of increased accuracy in the method. In this
example, higher order methods are again more efficient when higher precision is
required. In terms of accuracy per function evaluation, the higher order methods
compare favorably with the methods in [19].

Error fory1 for mildly stiff case

10° 10°
Number of function evaluations

FIG. 10. Errors for the first component of the Van der Pol equation with € = 10~ computed
using SISDC’II{{ methods for K ranging from 3 through 7.

The results for € = 1073 are shown in Figs. 12 and 13. In this case, the con-
vergence behavior of the methods in the range of At displayed differs considerably
from the formal order. This phenomenon, known as order reduction, occurs in
Runge-Kutta and other methods as well [17, 24, 19]. Also in this range, higher-
order versions are not significantly more efficient than those with lower order. It
is reasonable to assume that the correct asymptotic convergence rates would be
observed given sufficiently small At; however, this is not the relevant issue in most
applications.
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Error for A for mildly stiff case
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FIG. 11. Errors for the second component of the Van der Pol equation with e = 10~1

computed using SISDCE methods for K ranging from 3 through 7.
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Comparing these results with those from the additive Runge-Kutta methods in
[19], suggests that the higher-order SISDC methods are more efficient for mildly
stiff problems when high precision is desired. In very stiff cases, the comparison is
not so clear. In particular, the SISDC methods do not achieve the same absolute
accuracy in the first component of the solution as the ARK methods in the range
of the figures in [19].

Error fory ] for stiff case

0.5

Absolute error at t

7th
6th
5th
4th
3rd

AERAI

10° 10° 10
Number of function evaluations

FIG. 12. Errors for the first component of the Van der Pol equation with e = 10~3 computed
using SISDCE methods for K ranging from 3 through 7.

Ideally for very stiff problems, one would like to integrate the stiff part of the
equation using a smaller time step than the non-stiff part. This approach is possible
in the SISDC context and is discussed in [6].

5.3. Method of Lines with SISDC
The motivation behind the development of SISDC methods is for the solution
of PDEs with both stiff and non-stiff terms. Therefore in this section, numerical
examples of simple advection diffusion equations are presented. Given the equation

up = Fg(u) + Fr(u), (16)
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FIG. 13. Errors for the second component of the Van der Pol equation with e = 10~32

computed using SISDCE methods for K ranging from 3 through 7.
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where Fp and F7 are functions of u and its spatial derivatives, the SISDC method
can be used with the MOL to yield higher-order, semi-implicit methods.
To illustrate this technique, consider the advection diffusion equation

up = a(t)uy + d(t)ug,. (17)

For simplicity, let the spatial domain be the unit line [0, 1] with periodic boundary
conditions.

For a given grid spacing Az let z; = iAz, and let U denote the numerical
approximation to the solution wu(z;,t,). Following the usual custom, indices are
omitted when the value is obvious. If DU; is a finite-difference approximation
to u,(x;), and LU; an approximation to u,,(z;), a simple first order method for
Eq. (17) is

U™ = U™ + At (a(tm) DU™ + d(tm1 ) LU™ Y. (18)

Eq. (18) is an implicit equation for U™%! which requires the inversion of the linear
equation

(I — d(tme1) Aty LYU™ T = U™ + Atyalt,,) DU™. (19)

Techniques for solving this equation, as well as many variations of it, are well
established. In particular, efficient integral equation methods with up to eighth-
order spatial accuracy have recently been developed [18, 14].

In the context of SISDC, a similar equation for the correction must be solved.
Specifically, the direct form of Eq. (11) becomes

(I — d(tyi1) Aty LYUTTEBEFL = gmok+l L A¢ Ta(t, ) (DU™RE — DU™F)
— d(tyr) LUTHYR — I (UD). (20)

Here, the last term of the equation is an approximation to the time integral of the
right hand side of Eq. (17) given by the appropriate quadrature rule (see Eq. (13))

P
k) =>" ¢ (a(t) DU} + d(t) LUY).
=0

In all of the above discussion, the issue of prescribing the boundary conditions for
Egs. (19) and (20) has been ignored. When Dirichlet or Neumann boundary condi-
tions are imposed at the domain boundary, care must be taken when determining
the boundary conditions imposed during the SISDC process. In particular, the ex-
act prescribed boundary conditions cannot be imposed when solving the correction
equation (except for the final correction) without a resulting reduction in the order
of accuracy. This phenomenon is similar to that which occurs with Runge-Kutta
methods [15, 20, 26, 11, 1, 25]. An important difference in the SISDC methods
is that the intermediate solutions are only used to construct the next correction
equation. This is unlike Runge-Kutta methods where the final solution is typically
a linear combination of the intermediate function values. A detailed discussion of
boundary conditions for the MOL as well as a general strategy for avoiding the loss
of accuracy for SISDC methods is presented in [22].
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The SISDC method is combined with the MOL approach and applied to Eq. (17)
with a(t) = 14 cos(57t), d(t) = v(3 —sin(7xt))/4. The initial condition is u(x,0) =
cos(2mx), and periodic boundary conditions are enforced, hence the exact solution
is

w(z, t) = e~ VBteos(Tnt)/Tm) cog(97 (¢ — t — sin(57) /57)).

The functions a(t) and d(t) are chosen to oscillate rapidly in time in order to
emphasize the temporal error in the numerical solution.

Two different values of v are considered, the mildly stiff case v = 0.01 and the
stiff case v = 0.25. For each case the operators D and L are sixth-order centered-
difference operators, and the implicit equation is solved via the FFT.

The SISDCE method is used for the numerical tests with K = 3 to 5, and the
solution is computed to time ¢ = 1.0 using a time step At = 4Azx. Errors in the L,
norm are plotted versus grid spacing in Figs. 14 and 15 along with lines with slopes
corresponding to 3rd, 4th, and 5th order convergence. In the mildly stiff case, the
convergence rates are extremely close to the expected values. For the stiff case, the
rates approach the expected values as At is reduced. It is important to remember
that the real part of the eigenvalues of the linear system of ODEs resulting from the
discretization scales like —v/ Az?, so as At approaches zero, the equation becomes
increasingly stiff. For the finest run, the ratio vAt/Axz? is greater than 350.

A similar test is performed using a non-linear equation, specifically Burgers equa-
tion

Up + ULy = VUgy. (21)

The initial conditions are u(x,0) = 14 0.5 cos(27x), v = 0.02, and periodic bound-
ary conditions are again used. A solution computed using SISDC? and 1024 grid
points is used as a reference solution, and the reported errors are calculated by
comparison with this solution at time ¢ = 1.0. The L., errors are displayed in
Fig. 16 for grid sizes ranging Az = 1/64 to 1/352 and At = 4Az. Lines with
slopes corresponding to 3rd, 4th, and 5th order convergence are superimposed and
confirm the expected convergence.

6. CONCLUSION

In this paper, a semi-implicit version of the method of spectral deferred correc-
tions for ordinary differential equations is presented. The methods are motivated
by the desire to design higher-order methods for partial differential equations with
both stiff and non-stiff terms. Numerical tests suggest that in cases that are not
extremely stiff, higher-order SISDC methods are as efficient or more efficient than
recent semi-implicit Runge-Kutta methods. For equations with vastly varying time
scales more elaborate time-splitting methods using different sized time-steps may
prove more effective. For example, in [6], it is shown that using smaller time
steps for the reaction piece in a multi-implicit SDC method for advection-diffusion-
reaction equations with very stiff reaction terms increases the overall efficiency of
the method.

The SISDC methods presented here have already been combined with the method
of lines approach for PDEs. In [21], fourth-order projection methods for the incom-
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Error for Advection-Diffusion Example, v = 0.01
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FIG. 14. Errors for the advection diffusion equation with v = 0.01 using SISDC{g methods
for K ranging from 3 through 5.
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Error for Advection-Diffusion Example, v = 0.25
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FIG. 15. Errors for the advection diffusion equation with v = 0.25 using SISDC{g methods

for K ranging from 3 through 5.
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Error for Burgers Equation Example
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FIG. 16. Errors for the Burgers equation example using SISDC? methods for K ranging
from 3 through 5.
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pressible Navier-Stokes equations are presented, and numerical examples set in
two-dimensional periodic domain are included there. The imposition of boundary
conditions for semi-implicit projection methods of any variety has been a contro-

versial subject virtually since projection methods were introduced. The relation-

ship between boundary conditions and the accuracy of the pressure is examined
in [7], and a project incorporating this analysis with SISDC methods to create
higher-order semi-implicit projection method for flows with material boundaries is
underway. Other applications involving the modeling of immersed boundaries in
incompressible flows, advection-diffusion-reaction equations, and low-Mach number
combustion are also being pursued.
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